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Abstract
We consider a pair of noncommutative lumps in the noncommutative Yang–
Mills–Higgs model, which is a perturbative branch of the infinite-dimensional
BFSS M(atrix) model. In the case when the lumps are separated by a
finite distance their ‘polarizations’ do not belong to orthogonal subspaces of
the Hilbert space. In this case the interaction between lumps is nontrivial.
We analyse the dynamics arising due to this interaction both in a naive
approach of rigid lumps and exactly as described by the underlying gauge
model. It appears that the exact description is given in terms of finite-matrix
models/multidimensional mechanics whose dimensionality depends on the
initial conditions.

PACS numbers: 11.25.−w, 02.40.−k

1. Introduction

Recent progress in theories over noncommutative spaces (for a review see e.g. [1–4] and
references therein) is stimulated by their importance for the nonperturbative dynamics of
string theory [5–8].

One particular feature of noncommutative field theories which has attracted considerable
interest is that in noncommutative models there exists a class of localized solutions nonexistent
in the models on commutative spaces. Although such solutions are different from a soliton
in the usual sense, they are conventionally called ‘noncommutative solitons’. In this work we
consider a subclass of such configurations. As it appears that the ‘noncommutative solitons’
which we deal with in this work have zero energy at rest; a more adequate term for them would
be either ‘vacuum’ or ‘lump’. Throughout this paper we use the latter.

Noncommutative lumps, in a scalar model with a potential having nontrivial local
minima, were first discovered in the limit of strong noncommutativity [9]. These solutions
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were interpreted as condensed low-dimensional branes living on a higher-dimensional
noncommutative brane [10, 11]. Their generalization was found in the case of an arbitrary
noncommutativity parameter by allowing a nontrivial gauge field background [12–15]. These
solutions correspond to nontrivial gauge field fluxes [16–18]. The particular property of lump
solutions we are considering is that they are ‘made’ of gauge fields only. However, using
the equivalence between different noncommutative Yang–Mills–Higgs models [19, 20], these
configurations can be mapped into noncommutative solitons in the sense of [14] or others.

The general multi-lump solutions appear like sums of projectors to mutually orthogonal
finite-dimensional subspaces of the Hilbert space. If subspaces are not orthogonal the
configuration fails to be a static one. Therefore the lumps start to interact.

An approach to the description of interacting lumps was proposed in [21, 22]. This
approach uses the substitution of the configuration consisting of a pair of lumps by a close one
which belongs to the static solutions. The interaction of the lumps in the adiabatic approach
is described by the motion in the curved modulus space of static solutions. This approach,
however, would only be valid provided that the motion was slow and stable in the vicinity
of the modulus space. In our case there are, however, indications that the noncommutative
lumps are not stable dynamically (compare with [23]), which also leads to the instability of
the motion around the modulus space.

Our approach is free from these drawbacks since we do not make any assumptions about
stability and adiabaticity. As the analysis shows, the dynamics of the system does not appear to
be a stable one. Moreover, it is stochastic. The regular motion occurs only when the distance
between lumps is exactly

√
θ ln 2. Even a small deviation from this brings the system to the

stochastical regime. It is also interesting to note that for some natural initial conditions the
dynamics of noncommutative lumps is described by a finite-dimensional matrix model.

The plan of this paper is as follows. First, we introduce the reader to the noncommutative
lumps in the Yang–Mills–Higgs model. After that we analyse the lump dynamics in both the
naive approach, when we treat the lumps as rigid particles and neglect the dynamics of their
‘shapes’, and an exact approach, when all possible deformations are taken into account. The
comparison reveals unexpected features in the behaviour of the interacting lumps. Namely,
their real behaviour is completely different from naive expectations.

2. The model

We consider the noncommutative gauge model which is described by the following action:

S =
∫

dt tr

(
1

2
ẊiẊi +

1

4g2
[Xi,Xj ]2

)
, (1)

where fieldsXi , i = 1, . . . , D, are time-dependent Hermitian operators, acting on Hilbert space
H, which realizes a irreducible representation for the one-dimensional Heisenberg algebra
generated by

[x1, x2] = iθ. (2)

Operators xµ satisfying the algebra (2) are said to be the coordinates of a noncommutative
two-dimensional plane. In this interpretation the operators of the Heisenberg algebra H can
be represented through ordinary functions given by their Weyl symbols. The composition rule
for the symbols is given by the Moyal or star product,

f ∗ g(x) = ei(θ/2)εµν∂µ∂ ′
ν f (x)g(x ′)

∣∣
x ′=x, (3)

where f (x) and g(x) are Weyl symbols of some operators, f ∗ g(x) is the Weyl symbol of
their product and ∂µ, ∂ ′

µ denote derivatives with respect to xµ and x ′µ, respectively.
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The integral of a Weyl symbol corresponds to 2πθ× the trace of the respective operator,
while its partial derivative derivative with respect to xµ corresponds to the commutator,

∂µf (x) = i(pµ ∗ f − f ∗ pµ)(x) = [pµ, f ](x), (4)

where pµ is given by pµ = (1/θ)εµνxν . Since there is one-to-one correspondence between
operators and their Weyl symbols we shall not distinguish between them, i.e. we shall retain
the same character for both, unless in danger of confusion.

The model (1) corresponds to the Hilbert space (N → ∞) limit of the BFSS matrix model
as well as in different perturbative limits it describes the noncommutative Yang–Mills(–Higgs)
model in the temporal gauge1 A0 = 0 [19, 20, 24].

Indeed, for equations of motion corresponding to the action (1),

Ẍi +
1

g2
[Xi, [Xi,Xj ]] = 0, (5)

one may find the static classical solution Xi = pi [19, 20, 24], satisfying

[pi, pj ] = iθ−1
ij , (6)

with constant invertible θ−1
ij . We also assume for the solution the irreducibility condition.

Namely, the set of operators pi is such that for any operator F , from [pi, F ] = 0 with all pi ,
i = 1, . . . , D, it follows that F is a c-number, F ∼ I.

Expanding fields around this solution, Xi = pi + Ai , and Weyl ordering operators Ai
with respect to xi = θ ijpj , one obtains precisely the (D + 1)-dimensional noncommutative
Yang–Mills model for the field given by the Weyl symbol Ai(x).

Obtaining another solution with a smaller number of independent pi , Xα = pα ,
α = 1, . . . , p,

[pα, pβ] = iθ−1
αβ , (7)

and Xi = const, i = p + 1, p + 2, . . . , D = 0, one obtains as a result the model of a
p-dimensional Yang–Mills field interacting with (D − p) scalars.

Having in mind this equivalence, in what follows we shall consider the two-dimensional
form of this noncommutative model. Also neglecting for a while the issues connected with
the Gauss law, the theory appears like a noncommutative scalar model in (2 + 1) dimensions.

For our purposes it is convenient to use two-dimensional ‘complex coordinates’ given by
oscillator raising and lowering operators2 a and ā,

a = 1√
2θ
(x1 + ix2), ā = 1√

2θ
(x1 − ix2), [a, ā] = 1, (8)

and the oscillator basis,

āa|n〉 = n|n〉, a|n〉 = √
n|n− 1〉, ā|n〉 =

√
n + 1|n + 1〉. (9)

As one can see the solution (6) or (7) has divergent traces. Another type of static solution
that one can find in model (1) is given by a configuration with localized, i.e. lumplike, Weyl
symbols (in some background pi)3. It is given by commutative matrices of finite ranks [14].
Since these lumps carry no energy—they are geometrically nontrivial vacua—we shall call

1 In this case the Gauss law constraints should be satisfied as well. We postpone the discussion of the Gauss law
constraints until section 3.4.
2 For the Weyl symbols we shall use later z and z̄ instead of a and ā to distinguish them from the Hilbert space
operators.
3 Fairly speaking these solutions are localized if the fields are treated as scalar ones. Since the gauge field definition
Aα = Xα − pα implies subtraction of a linear function pα this type of solution corresponds to functions with linear
growth.
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them noncommutative lumps in spite of their close relation to ‘noncommutative solitons’
discussed in the literature [9–15].

Up to a gauge transformation the N -lump solution is given by

Xi =
N∑
n=0

cin|n〉〈n|, (10)

where cin is the nth eigenvalue of the (finite-rank) operator Xi . Due to the finiteness of the
rank the Weyl symbol of Xi vanishes at infinity as quickly as a Gaussian factor multiplied by
a polynomial. The simplest one-lump solution can be written in the form

X
(0)
i = ci |ψ〉〈ψ |, (11)

where ci give the ‘height’ and the ‘orientation’ of the lump. By a proper Lorentz transformation,
Xi →  

j

i Xj , one can make ci have the only non-zero component, say c1, while up to a gauge
transformation the ‘polarization’ can be chosen to correspond to the oscillator vacuum state
|ψ〉 = |0〉.

In the star-product form operator (11) is represented by the Weyl symbol

Xi(z̄, z) = 2cie
−2|z|2 .

The lump shifted along the noncommutative plane by a (c-number) vector u is given by

X
(u)
i = cie−ipµuµ |0〉〈0|eipµuµ = cie−|u|2 eāu|0〉〈0|e−aū. (12)

Its Weyl symbol, correspondingly, is given by X(u)i (z) = 2cie−|z−u|2 . The shifted lump with
constant u is a solution again. When u becomes time dependent one can perform the time-
dependent gauge transformation to obtain4

Xi → eipµuµXie
−ipµuµ, (13)

which shifts the lump back to the centre, but produce a kinetic term for ∼u̇2/2. Thus a single
noncommutative lump moves freely like a non-relativistic particle. It is also stable since its
energy at rest is zero.

In what follows we are going to analyse the situation when there is a pair of lumps separated
by a distance u.

3. A pair of interacting lumps

As we have shown in the previous section, a single noncommutative lump can be always rotated
to have the polarization |0〉 and orientation alongX1. In the case of two lumps one can choose
without loss of generality for the configuration to involve nontrivially only two matrices e.g.
X1 and X2.

Consider two lumps which are obtained from c|0〉〈0| by shifts along the noncommutative
plane by u(1) and u(2) respectively. The dynamics of the centre is free and can be decoupled
by a time-dependent gauge transformation similar to (13).

Thus, the configuration we consider appears like

X1 = cV PV −1 ≡ c| − u/2〉〈−u/2|, (14a)

X2 = cV −1PV ≡ c|u/2〉〈u/2|, (14b)

Xi = const, i = 3, . . . , D, (14c)

4 This affects the gauge, A0 = 0.
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u

V

Figure 1. The profile of the lump–lump interaction potential in the naive approach.

where we introduced the shorthand notations

V = e(i/2)pµu
µ = e

1
2 (aū−āu), (15)

P = |0〉〈0|. (16)

The quotient c can be absorbed by the rescaling of the coupling and the time, therefore we can
set it generically to unity, c = 1. This configuration corresponds to two lumps of the same
height c oriented along X1 and X2, respectively, and separated by the distance u.

In what followsXi , i = 3, . . . , D, will also enter the equations trivially, so in the remaining
part of the paper for the simplicity of notation the index i will run the range i = 1, 2. If we were
considering more than two noncommutative lumps we would have to retain more matrices.

3.1. Naive picture: rigid lumps

Consider first a naive approach where we are dealing with rigid interacting lumps, which means
that we are neglecting the deformations in their shapes. In this case the only parameter which
is dynamical is the separation distance u. Although this approximation sounds reasonable,
later we shall consider the exact description, which shows that this approach is not justified.
However, we decided to retain this naive analysis for illustrative purposes.

To obtain the action describing the dynamics let us insert the ansatz (14) into the classical
action (1). The computation of derivatives and traces gives the following u-dependence of the
action:

S[u] =
∫

dt

(
1

2θ
|u̇|2 − 2e− |u|2

2θ
(
1 − e− |u|2

2θ
))
, (17)

where we restored the explicit θ dependence.
The potential is depicted in figure 1. According to this sufficiently close lumps attract

while distant ones repel. At the critical distance uc = √
2θ ln 2 they will remain in unstable

equilibrium.
The above conclusions concerning the lump dynamics would be valid, however, only in

the case when one can neglect the involvement of the lump shape in the dynamics. To evaluate
the importance of the shape dynamics one should consider arbitrary deformations of the shape
of lumps and separate them from the motion of the lump as a whole.

In the next section we analyse the dynamics from the point of view of exact field equations
of motion. The lump configuration is taken to be the initial condition for the field equations.
The result we obtain in the next section will invalidate the results of the present naive approach;
however, the critical distance uc will correspond to a special case.
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3.2. Exact description: lumps at rest

The exact description of the lump dynamics is given by the field equations of motion for Xi ,

Ẍi +
1

g2
[Xj, [Xj,Xi]] = 0 (18)

corresponding to the action (1), supplied with initial conditions given by the lump
background (14). Since the equations are second-order ones, in addition to this one has to
consider the initial data for the time derivatives of Xi .

The simplest choice is when one starts at t = 0 with a static configuration. Thus, the
initial conditions we impose are as follows:

X1|t=0 = | − u/2〉〈−u/2|, Ẋ1|t=0 = 0, (19a)

X2|t=0 = |u/2〉〈u/2|, Ẋ2|t=0 = 0. (19b)

Considering the lumps at the initial moment as being at rest produces a considerable
simplification of the equations of motion. Indeed, the initial data (14) imply that the operators
Xi are nonzero only on the two-dimensional subspace Hu of the Hilbert space which is the
linear span of vectors |u/2〉 and | − u/2〉. Since, by virtue of equations of motion (18),
the second time derivative is proportional to commutators of Xi , it also vanishes outside the
two-dimensional subspace Hu. Due to the zero initial conditions for the first derivatives,
operators Xi will remain all the time in the same two-dimensional subspace of the Hilbert
space.

Let us consider only those components ofXi which are nonzero. This reduces the Hilbert
space operators to ones acting on the two-dimensional subspace Hu of the Hilbert space spanned
by | ± u/2〉. Let us introduce an orthonormal basis in Hu.

The natural orthonormal basis which can be built up out of | ± u/2〉 is given by vectors
|±〉, defined as follows (see the appendix):

|+〉 ≡
(

1
0

)
= 1√

2(1 + e− 1
2 |u|2)

(|u/2〉 + | − u/2〉), (20a)

|−〉 ≡
(

0
1

)
= 1√

2(1 − e− 1
2 |u|2)

(|u/2〉 − | − u/2〉). (20b)

The singularity in |−〉 in the limit u → 0 appears since in this limit |u/2〉 and | − u/2〉 tends
to be parallel and the subspace become one dimensional.

In this basis our problem is reformulated in terms of the 2×2 matrix model with equations
of motion superficially appearing the same as (18),

Ẍ
(2)
i +

1

g2
[X(2)k , [X

(2)
k , X

(2)
i ]] = 0, (21)

but nowX(2)i are finite-dimensional 2 × 2 matrices. The initial conditions in the basis (20) are
rewritten as follows:

X
(2)
1 |t=0 = 1

2

(
1 + e− 1

2 |u|2 −
√

1 − e−|u|2

−
√

1 − e−|u|2 1 − e− 1
2 |u|2

)
, Ẋ1|t=0 = 0, (22a)

X
(2)
2 |t=0 = 1

2

(
1 + e− 1

2 |u|2 √
1 − e−|u|2√

1 − e−|u|2 1 − e− 1
2 |u|2

)
, Ẋ2|t=0 = 0. (22b)
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It is worthwhile to note that the description in terms of 2 × 2 matrices is valid only for
the situation where the lumps were initially at rest. Beyond this the condition Ẋi |t=0 = 0 is
an additional specification and this says also that the shapes of the lumps are not changing at
the initial moment. One can consider a more general initial condition Ẋi |t=0 ∝ Xi , for which
the same description in terms of 2 × 2 matrices remains valid. (One-soliton solutions of this
type were considered in [25].)

Equations similar to ones given by (21) although in a different context, the one-dimensional
ordinary Yang–Mills model, were under study for a long time and were initiated by [26–28]. In
a modern context they appear in [29–32] in connection to the finiteN matrix model. The system
described by such equations was shown to exhibit a stochastic behaviour. Let us describe it in
more detail in the application to the present case.

In order to rewrite the equations (22) in the scalar form let us expand the matrices Xi in
terms of the two-dimensional Pauli matrices σα , α = 1, 2, 3, and the two-dimensional unit
matrix I2 (which in fact is the projector to Hu) satisfying the algebra

[σα, σβ] = iεαβγ σγ , [σα, I2] = 0. (23)

The expansion is as follows:

X1,2 = X0
1,2I2 +Xα1,2σα. (24)

In terms of this expansion the equations of motion appear as follows:

Ẍ0
1,2 = 0, (25a)

Ẍα1 +
1

g2
(X2

2δ
α
β −Xα2X2β)X

β

1 = 0, (25b)

Ẍα2 +
1

g2
(X2

1δ
α
β −Xα1X1β)X

β

2 = 0, (25c)

where X2
1,2 = Xα1,2Xα1,2. For the initial conditions one also has

Ẋα1,2 = 0, (25d)

X0
1|t=0 = X0

2|t=0 = 1
2 , (25e)

X1
1|t=0 = − 1

2

√
1 − e−|u|2 , X1

2|t=0 = 1
2

√
1 − e−|u|2 , (25f)

X2
1|t=0 = X2

2|t=0 = 0, (25g)

X3
1|t=0 = X3

2|t=0 = e− 1
2 |u|2 . (25h)

In particular, equation (25a) says that the scalar parts of the matricesX1,2 remains constant
during the motion (X0

1,2(t) = 1/2) provided zero initial conditions for the ‘velocities’ Ẋ0
i = 0.

At the same time the remaining parts are subject to more complicated nonlinear dynamics.
Before analysing the solutions for Xα1,2, α = 1, 2, 3, let us consider their interpretation in

terms of the lump dynamics over noncommutative space in the star-product representation.
The noncommutative function which corresponds to a particular solution Xαi (t) will be

given by

Xi(t; z, z̄) = 1
2 I(z, z̄) +Xαi (t)σα(z, z̄), (26)

whereXαi (t) are the solutions of to (25) and I(z, z̄)with σα(x) the Weyl symbols corresponding
to the Pauli matrices.
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The respective two-dimensional Weyl symbols are computed in the appendix. They are
given by

σ1(z, z̄) = 2√
1 − e−|u|2

(e−2|z− u
2 |2 − e−2|z+ u2 |2), (27a)

σ2(z, z̄) = 2ie−2z̄z√
1 − e−|u|2

(ez̄u−ūz − e−z̄u+ūz), (27b)

σ3(z, z̄) = − 2e− 1
2 |u|2

1 − e−|u|2 (e
−2|z− u

2 |2 + e−2|z+ u2 |2) +
e−2z̄z

1 − e−|u|2 (e
z̄u−ūz + e−z̄u+ūz), (27c)

I(z̄, z) = σ0(z, z̄) = 2

1 − e−|u|2 (e
−2|z− u

2 |2 + e−2|z+ u2 |2)− 2e−2|z|2− 1
2 |u|2

1 − e−|u|2 (ez̄u−ūz + e−z̄u+ūz).

(27d)

As can be seen from equations (26) and (27), fields Xi(z, z̄) are different from zero only
in the small vicinities (of size of the order of ∼√

θ ) of points z = 0 and ±u/2. This property
holds independently of the particular form of the solution Xαi (t). This means that for any
initial distance the lumps, once left with zero initial velocities, will not try to leave their places;
the dynamics instead will concern only the heights and creation of a ‘baby lump’ at the mid-
point between them. This behaviour is surprising as it is in total disagreement with the naive
approach drawn in the previous subsection. There is no regime when the lumps would behave
like rigid particles.

Let us consider now time-dependent functions Xαi (t) in more detail. The equations (25)
are too complicated to find the general solution; however, for our particular initial data one
can use the rich symmetry of the model and find a simplifying ansatz.

Assuming that the magnitudes of Xα1 and Xα2 are also equal X2
1(t) = X2

2(t) for nonzero
times (we can check this assumption later as a consistency condition for the ansatz, but also
prove it independently of the ansatz using conservation laws), one can split Xα1 and Xα2 into
two orthogonal components Xα and Yα as follows:

Xα1 = Xα + Yα, Xα2 = Xα − Yα, (28a)

Xα = 1
2 (X

α
1 +Xα2 ), Y α = 1

2 (X
α
1 −Xα2 ); (28b)

the equality of the square modules X2
1(t) = X2

2(t) implies that Xα and Yα remain orthogonal.
The equations of motion in terms of Xα and Yα read

Ẍα = − 2

g2
Y 2Xα, (29a)

Ÿ α = − 2

g2
X2Yα, (29b)

where X2 = XαXα and Y 2 = YαY α . The initial conditions are respectively

Xα|t=0 = 1
2 (X

α
1 (0) +Xα2 (0)), Y α|t=0 = 1

2 (X
α
1 (0)−Xα2 (0)), (29c)

Ẋα(0) = Ẏ α(0) = 0. (29d)

From equations (29) one can see that the directions ofXα and Yα do not change. The fact
that Xα and Yα are always mutually orthogonal makes the assumption X2

1(t) = X2
2(t) for the

ansatz (28) consistent.
Splitting the vectors Xα and Yα into the magnitudes X and Y , which are dynamical, and

unimodular vectors

eαX = Xα/
√
X2|t=0 = (0, 0, 1), (30a)

eαY = Yα/
√
Y 2|t=0 = (1, 0, 0), (30b)
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which are conserved, one has the equations for the magnitudes X and Y ,

Ẍ = − 2

g2
Y 2X, (31a)

Ÿ = − 2

g2
X2Y. (31b)

These equations are supplied by the initial data,

X|t=0 = e− 1
2 |u|2 , Y |t=0 = −

√
1 − e−|u|2 , Ẋ|t=0 = Ẏt=0 = 0. (31c)

As we mentioned earlier, the system (31) exhibits a stochastic behaviour which has been
studied both numerically and analytically [26–32]. The system is equivalent to one of a two-
dimensional particle moving in the potential U(X, Y ) = X2Y 2. The configuration space
region allowed by the energy conservation can be conventionally divided into several regions
with different characters of motion. In the so-called stadiumX ∼ Y � 1, the motion is almost
free, while in four channels along the axes the motion of the particle is strongly affected by
the potential. There it can be described by the asymptotic formula [33]

Y (t) = −A
2
t2 +W0t + Y0, (32a)

X(t) = 1

g2

√
2A

Y(t)
cos

[
g

(
−A

6
t3 +

W0

2
t2Y0t + ϕ0

)]
, (32b)

where

A = V 2
0 + g2X2

0Y
2
0

Y0
, ϕ0 = arccos

√
X2

0Y
2
0

V 2
0 + g2X2

0Y
2
0

, (32c)

and

X0 = X(t0), Y0 = Y (t0), (32d)

V0 = Ẋ(t0), W0 = Ẏ (t0), (32e)

t0 being the time of entrance into the channel. Here we assumed that the particle is in the
region where |X| � |Y |. (The opposite case is obtained by the interchange of X and Y .)

In the channel the particle reaches the maximal value of Y ∼ W 2
0 /A, after which it

is reflected back to the stadium. The instability arises when the particle passes through the
stadium and enters a new channel. Generally, therefore, the motion of the particle is stochastic.
There is also a discrete set of trajectories which are periodic. Thus, depending on initial
conditions the system can move in a regular periodic way, although this motion is unstable as
an arbitrary small perturbation can push the system to the stochastic regime.

The asymptotic formulae (32a) and (32b) can provide a reliable description of the system
for a certain period of time for extremal cases when the lump centre separation distance is
either large (q ≡ e−|u|2 � 1) or small (

√
1 − q2 � 1). Thus, if u → ∞ (q � 1) then for

times less than tstoch = gq−1 one has the asymptotic solution,

Y (t) = q2
√

1 − q2

4g2
t2 −

√
1 − q2, (33a)

X(t) =
√

q2(1 − q2)1/2

(q2(1 − q2)1/2/4g2)t2 − (1 − q2)1/2)
cos

[
1

g

(
q2
√

1 − q2

4g2
t3 −

√
1 − q2t

)]
.

(33b)
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In the opposite case when the lumps are close one can again give a reliable description for of
the dynamics by the following asymptotic formula:

X(t) = −q(1 − q2)

4g2
t2 + q, (34a)

Y (t) =
√

q(1 − q2)

−(q(1 − q2)/4g2)t2 + q
cos

[
1

g

(
−q(1 − q2)

4g2
t3 + qt

)]
, (34b)

valid for times up to the order of tstoch = g(1 − q2)−1/2, after which the system approaches the
stadium, where we cannot control its motions.

There is also one particular separation distance which corresponds to periodic motion.
This happens for the initial conditions X|t=0 = −Y |t=0 = 1/

√
2 or u = √

θ ln 2. In this
case the motion is periodic and is given by X(t) = Y (t) ≡ f (t), where for f (t) we have the
(implicit) formula

f (t) : t =
∫ f

1/
√

2

du√
1/4 − u4

. (35)

Now, let us recall that in terms ofX(t) and Y (t) the dynamical fieldXi(t, z̄, z) describing
the lumps takes according to equation (26) the following form:

X1(t, z̄, z) = 1
2σ0(z̄, z) +X(t)σ3(z̄, z) + Y (t)σ1(z̄, z)

= 1 − e− 1
2 |z|2X(t)−

√
1 − e−|u|2Y (t)

1 − e−|u|2 e−2|z− u
2 |2

+
1 − e− 1

2 |z|2X(t) +
√

1 − e−|u|2Y (t)
1 − e−|u|2 e−2|z+ u2 |2

+
X(t)− e− 1

2 |u|2

1 − e−|u|2 e−2|z|2(ez̄u−zū + e−z̄u+zū), (36a)

and

X2(t, z̄, z) = 1
2σ0(z̄, z) +X(t)σ3(z̄, z)− Y (t)σ1(z̄, z)

= 1 − e− 1
2 |z|2X(t) +

√
1 − e−|u|2Y (t)

1 − e−|u|2 e−2|z−u/2|2

+
1 − e− 1

2 |z|2X(t)−
√

1 − e−|u|2Y (t)
1 − e−|u|2 e−2|z+u/2|2

+
X(t)− e− 1

2 |u|2

1 − e−|u|2 e−2|z|2(ez̄u−zū + e−z̄u+zū), (36b)

where the functions σ1,3 are given by equations (27). Let us note that the function σ1(z̄, z) is
localized at the points where the lumps are, i.e. at z = ±u/2, while the function σ3(z̄, z) is
also nonzero in the vicinity of the origin, which is the mid-point between the lumps.

The analysis of the solution (36) reveals that once left in their positions the lumps will
not tend to move away from them but engage in a stochastic change of their heights as well as
creation of a small lump at the mid-point between them. This process can be reliably described
for short amounts of time in the limits when the lumps are placed very close together or very
far apart, each case degenerating to stochastic motion of the heights of the lumps.

3.3. Exact description: lumps in motion

The difference arising for moving lumps is in the initial values for the velocities. Since a generic
initial condition for the velocities can complicate the system, making it infinite dimensional



Notes on the dynamics of noncommutative lumps 3135

again, we restrict ourselves to such initial data which correspond to the rigid motion of the
lumps.

Thus, one has to replace the initial values for the velocities by the following:

Ẋi(u)|t=0 = ∂Xi

∂u
u̇

∣∣∣∣
t=0

+
∂Xi

∂ū
˙̄u

∣∣∣∣
t=0

, (37)

where Xi(u) is the lump configuration. Explicitly, using (14), one has

Ẋ1|t=0 = − 1
4 (v̄u + ūv)X1|t=0 + 1

2 (vāX1 + v̄X1a)|t=0, (38a)

Ẋ2|t=0 = − 1
4 (v̄u + ūv)X2|t=0 − 1

2 (vāX2 + v̄X2a)|t=0, (38b)

where v = u̇(t = 0), and solve the infinite-dimensional operator equation (5).
Applying the same strategy as in the case of lumps at rest we see that the initial data are

given by operators which are nonzero only in a four-dimensional subspace Hv
u of the infinite-

dimensional Hilbert space H, which is spanned by two old vectors | ± u/2〉 and two new
vectors ā| ± u/2〉 = 2(∂/∂u| ± u/2〉). Let us note that they are all linear independent for
u �= 0. Therefore, the system is reduced to the four-dimensional matrix model.

The difference of this case from one with lumps at rest resides only in more complicated
technical details, therefore we shall not discuss it here.

The qualitative picture one has in this situation does not change much in comparison with
the case of lumps a rest. Just as in the previous case, there is a stochastic dynamics of the
heights of the lumps and creation of ‘baby lumps’, while the centres of the lumps will keep
moving with constant velocities. Indeed, for accelerating lump operators Xi are nonzero out
of the subspace Hv

u, which, as we know, does not happen.
In general, the solution is given by a linear combination with time-dependent coefficients of

functions (51), their first derivatives (∂σα/∂u), (∂σα/∂ū) and some of their second derivatives,
such as (∂2σα/∂u∂ū).

3.4. The Gauss law

Once we want to relate our system to the the Yang–Mills/BFSS model we have to take care
about the Gauss law constraint, which is obtained from the variation of the A0 component
of the original gauge-invariant noncommutative Yang–Mills or BFSS action. This constraint
appears as follows:

L = [Xi, Ẋi] = 0. (39)

As we discussed at the beginning of this section the equations of motion imply that the
quantity (39) is at least conserved. Indeed, using the equations of motion one has

L̇ = i[Xi, Ẍi] = 0. (40)

Therefore to obtain a self-consistent solution for the Yang–Mills/M(atrix) theory one has
to verify that the Gauss law vanishes on initial data, L|t=0 = 0. For zero-velocity initial
conditions this is implied automatically, while for the moving lumps one has

L = i[Xi, Ẋi]|t=0 = iv

[(
ū

2
− ā

)
X1 +

(
ū

2
+ ā

)
X2

]
+ H.c., (41)

where ‘H.c.’ stands for the Hermitian conjugate.
The equation (41) implies that L is zero only when the velocity v vanishes. Therefore

moving lumps violate the Gauss law.
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As in the ordinary gauge model the violation of the Gauss law for nonzero velocities can be
interpreted as the presence of a nontrivial electric charge background. Indeed, in the presence
of external sources the Gauss law becomes

L′ = i[Xi, Ẋi] + ρ = 0, (42)

where ρ is some electric charge density which appears in the action as a term 1Scharge =∫
dp+1x ρX0 and which is chosen to cancel (41) exactly. (Here we are not going to analyse in

what conditions such charge density can emerge.)
As a result we have that the Gauss law is satisfied automatically in the case of the lumps

at rest, while moving lumps generate some background charge distribution.

3.5. More dimensions

One can perform analogous analysis in more than (2 + 1) dimensions.
As most analysis uses the operator formalism, the only difference which appears in p + 1

dimensions is that one has to compute the Weyl symbols of sigma matrices with respect to a
different background, for example one given by (6).

Computation of the (p + 1)-dimensional analogue of equations (27) yields

σ1(x) = 2√
1 − e− 1

2 u·G·u
(e−(x−u/2)·G·(x−u/2) − e−(x+u/2)·G·(x+u/2)), (43a)

σ2(x) = − 4ie−x·G·x√
1 − e− 1

2 u·G·u
sin u× x, (43b)

σ3(x) = − 2e−u·G·u

1 − e− 1
2 u·G·u (e

−(x−u/2)·G·(x−u/2) + e−(x+u/2)·G·(x+u/2)) +
2e−x·G·x

1 − e− 1
2 u·G·u cos u× x,

(43c)

I(x) = σ0(x) = 2

1 − e− 1
2 u·G·u (e

−(x−u/2)·G·(x−u/2) + e−(x+u/2)·G·(x+u/2))

−4e−x·G·x− 1
4 u·G·u

1 − e− 1
2 u·G·u cos u× x, (43d)

where we introduced the notationu×x = θµνuµxν ,µ, ν = 1, . . . , p, and squares are computed
with the metric G = +

√−θ−2. In the basis for which the noncommutativity matrix θµν takes
the canonical form

θµν =



θ(1)iσ2 0 0 . . .

0 θ(2)iσ2 0 . . .

0 0 θ(3)iσ2 . . .
...

...
...

. . .


 , (44)

the metric G is diagonal,

Gµν =



θ−1
(1) I2 0 0 . . .

0 θ−1
(2) I2 0 . . .

0 0 θ−1
(3) I2 . . .

...
...

...
. . .


 , (45)

where

iσ2 =
(

0 1
−1 0

)
and I2 =

(
1 0
0 1

)
. (46)

Then the solution is given by an equation similar to (26) but with respective two-
dimensional functions replaced by I(x) and σα(x).
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4. Discussion and conclusions

In this paper we have considered the dynamics of interacting noncommutative lumps.
The naive approach for the dynamics is obtained when one considers the motion of the

lumps as rigid structures and does not take into consideration their deformations. The only
dynamical parameters in this case are the positions of the lumps. In this approximation the
dynamics of the lump pair is described by a cup-shaped potential having minimum at the origin,
Gaussian decay at infinity and an unstable equilibrium at the distance

√
θ ln 2.

The exact analysis in the framework of the original noncommutative theory, however,
refutes the result of the above approximation. It appears that in fact it is the shape which is
mostly affected by the the interaction, and not the motion of the centres of lumps.

Another interesting observation is that the problem of the noncommutative Yang–Mills
model is reduced to one in a finite-dimensional matrix model. Thus, in the case of two lumps
starting with zero velocities, the exact description reduces to a 2×2 matrix model. In particular
we have that the U(1) part of this model has trivial dynamics, while the remaining SU(2) part
generally exhibits stochastic behaviour.

The property of this dynamics that it does not affect the motion along the line connecting the
lumps appears to be anti-intuitive to what one could expect from interaction of (quasi)particle
objects. Let us note that an analogous situation can be met in vortex dynamics in solid-state
physics [34–36].

The results of this work can be easily generalized to the case of lumps with arbitrary
mutual Hilbert space polarizations not related to shifts along noncommutative space. The
dynamics of such lumps or branes does not differ qualitatively from the shifted ones, but in
this case the simple physical interpretation is missing. However, from the point of view of
mathematical completeness it would be worth considering, and this will probably be done in
future research.

It seems that the interpretation in terms of branes when the heights of the lumps have the
meaning of coordinates of the zero-brane in the direction transversal to the noncommutative
brane is the most natural. (In this picture the Yang–Mills component of the model describes
the dynamics of longitudinal degrees of freedom of the noncommutative brane, while the
scalar fields describe the transversal ones.) Since lumps form localized configurations they
can be attributed the sense of zero-branes. In this context it appears that the dynamics of
interacting zero-branes affects only the motion in the transversal directions in which D0-branes
are stochastically ‘bouncing’.

We have also learnt that the dynamics of two interacting zero-branes is described by
the U(2) M(atrix) model in the case when the branes do not move or do not change their
polarizations. If the branes are in motion one needs a matrix model of higher dimension to
describe it. This is slightly in contrast to the interpretation of the finiteN matrix model, which
is believed to describe exactly N branes.

So far we have considered only one pair of interacting lumps. It would also be of interest
to extend the analysis of this paper to a larger number of lumps, and eventually to consider a
gas of lumps.
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Appendix. Useful formula connecting the two-dimensional representation with other
representations

Here we summarize the formula connecting the three main representations of the objects
used in this paper, Hilbert space operator, noncommutative functions (Weyl symbols) and
two-dimensional matrices.

The two-dimensional space Hu for u �= 0 is the span of the two vectors | − u/2〉 =
e− 1

8 |u|2 e− 1
2 āu|0〉 and |u/2〉 = e− 1

8 |u|2 e
1
2 āu|0〉, where |0〉 is the oscillator vacuum state.

The vectors |±u/2〉 have unit magnitudes but are not orthogonal. One can easily construct
an orthonormal basis consisting of vectors {|+〉, |−〉} given by equations (20a) and (20b) (see
figure A.1).

An arbitrary Hermitian operator acting in this two-dimensional subspace can be expanded
in terms of ordinary Pauli matrices and the unit matrix,

σ0 ≡ I2 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (47)

as follows:

X = X0 +Xασα, (48)

where Xα are computed as

Xα = 1
2 trXσα. (49)

On the other hand, as operators over the Hilbert space the two-dimensional unit matrix5

and Pauli matrices can be expressed as noncommutative functions through their Weyl
symbols.

5 Which is the projector to the two-dimensional subspace Hu of the Hilbert space.
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Figure A.2. Plots of the profiles of the functions σ0,1,2,3(z̄, z).

The Weyl symbols of operators with bounded square trace to which undoubtedly belong
I2 and σα can be found by a direct formula,

X ∼
∫

dk̄ dk ei(k̄z+kz̄) trXe−i(k̄a+kā). (50)

Technically, one can write the matrices in the (nonorthogonal) basis of | ± u/2〉 and use
the Weyl symbols for the following operators:

|u/2〉〈u/2| ∼ 2e−2|z−u/2|2 ,
| − u/2〉〈−u/2| ∼ 2e−2|z+u/2|2 ,
|u/2〉〈−u/2| ∼ 2e−2|z|2+(z̄u−zū),
| − u/2〉〈u/2| ∼ 2e−2|z|2−(z̄u−zū),

(51)

which can be easily computed.
The sigma matrices are expressed in the nonorthogonal basis of | ± u/2〉 as follows:

σ1 = 1√
1 − e−|u|2

(|u/2〉〈u/2| − | − u/2〉〈−u/2|), (52a)

σ2 = 1√
1 − e−|u|2

(|u/2〉〈−u/2| − | − u/2〉〈u/2|), (52b)

σ3 = − e− 1
2 |u|2

1 − e−|u|2 (|u/2〉〈u/2| + | − u/2〉〈−u/2|)

+
1

1 − e−|u|2 (|u/2〉〈−u/2| + | − u/2〉〈u/2|), (52c)
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and, finally

σ0 = 1

1 − e−|u|2 (|u/2〉〈u/2| + | − u/2〉〈−u/2|) +
e− 1

2 |u|2

1 − e−|u|2 (|u/2〉〈−u/2| + | − u/2〉〈u/2|).
(52d)

Inserting (51) into (52) one finds immediately the functions (27) of the third section.
The plots of functions σα(z̄, z) can be seen in figure A.2.
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